
Lucio Sciamanna

AUTOCOSTRUZIONE dei PANNELLI FOTOVOLTAICI

Lucio Sciamanna

AUTOCOSTRUZIONE dei PANNELLI FOTOVOLTAICI

Terra Nuova Edizioni

Direzione editoriale: Mimmo Tringale

Autore: Lucio Sciamanna Editing: Cristina Michieli

Impaginazione: Domenico Cuccu

Copertina: Andrea Calvetti

Foto di copertina: Bojan Tezak – istockphoto.com

2008, Editrice Aam Terra Nuova, via Ponte di Mezzo 1 – 50127 Firenze

tel 055 3215729 fax 055 3215793

libri@aamterranuova.it - www.aamterranuova.it

I edizione, maggio 2008

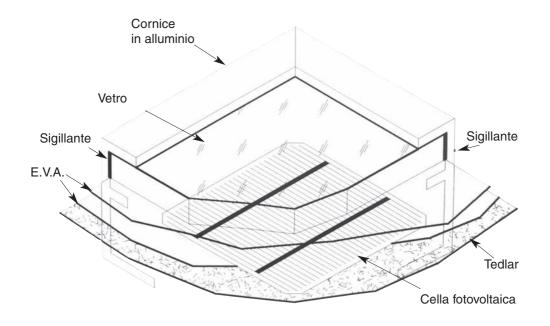
ISBN 88-88819-24-2

Tutti i diritti sono riservati. Nessuna parte del libro può essere riprodotta o diffusa con un mezzo qualsiasi, fotocopie, microfilm o altro, senza il permesso dell'editore. Le informazioni contenute in questo libro hanno solo scopo informativo, pertanto l'editore non è responsabile dell'uso improprio e di eventuali danni morali o materiali che possano derivare dal loro utilizzo.

Stampa: Lineagrafica, Città di Castello (Pg)

Sommario

Avvertenze e sicurezza		Forature per le viti	31
Cos'è un pannello fotovoltaico?	7	Rimozione delle sbavature	
A cosa serve	8	e dei trucioli di metallo in eccesso	32
Com'è fatto	9	Fissaggio dei profilati di alluminio	
Autocostruzione	10	al plexiglass bianco	32
Cosa serve per costruirlo?	12	Posizionamento delle celle	
Progettazione	13	e connessione in serie	32
Calcolo delle dimensioni	14	Collaudo del modulo	32
Calcolo della lunghezza totale		Fissaggio del plexiglass trasparente	
Calcolo della larghezza totale		Scatola di distribuzione	
Lunghezza dei profilati di alluminio	19	Ecco come si presenta	
Lista dei materiali	20	il pannello finito	36
Lista degli attrezzi da lavoro	21	Esempi di utilizzo	38
Preparazione del montaggio	22	Alimentazione di una pompa	
Ispezione delle celle fotovoltaiche	22	per giochi d'acqua	38
Misurazione della tensione a vuoto	24	Illuminazione di una piccola baita	39
Misurazione della corrente		Approfondimenti	
di cortocircuito	25	sulla scelta dei materiali	41
Consigli sulla saldatura		Come scegliere le celle fotovoltaiche	42
delle connessioni	26	Cenni sulle incentivazioni	
Assemblaggio delle celle	27	statali in Conto Energia	43
Taglio delle piattine di rame	27	Comprendere i dati tecnici	
Preparazione delle piattine	27	di un pannello fotovoltaico	53
Saldatura delle piattine	28		
Creazione di una dima di montaggio	29	Glossario tecnico	56
Saldatura delle celle in serie		Bibliografia e approfondimenti	57
Assemblaggio del pannello		Note sull'autore	57

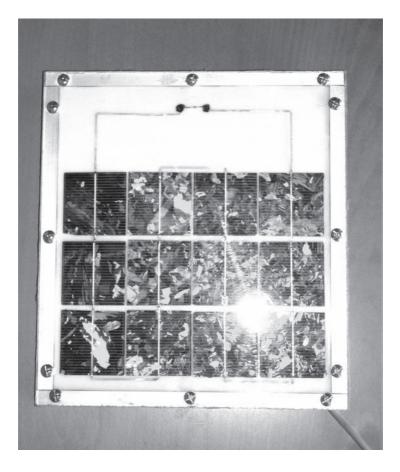

Autocostruzione

Per costruire un pannello fotovoltaico sono necessari due requisiti primari: pazienza ed un minimo di capacità manuali. È doveroso sottolineare che l'acquisto di un pannello fotovoltaico commerciale assicura, a chi lo compra, una garanzia di funzionamento di 20-25 anni ed un certificato di conformità alla normativa CEI EN 61515. Questa normativa comprende una serie di test che il pannello deve superare, che possono essere riassunti in: **prove elettriche** che certificano il grado di efficienza del pannello, tra cui la prova di isolamento che certifica la sicurezza elettrica; **prove termiche** con temperature di prova che arrivano a -40° e +80°C ad elevata umidità e **prove meccaniche** che certificano la robustezza del pannello ed in particolar modo la pressione cinetica del vento e la prova di grandine con sfere di ghiaccio del diametro massimo di 7,5 centimetri e con velocità massima di 140 Km/h.

Per poter ottenere un accettabile grado di qualità del pannello fotovoltaico autocostruito è necessario usare accortezze tecniche e materiali resistenti per l'utilizzo in esterno. È importante che la struttura di sostegno delle celle risulti sufficientemente rigida per poter resistere alle sollecitazioni meccaniche del vento e di eventuali accumuli di neve.

Le celle fotovoltaiche sono dei generatori elettrici ed hanno quindi bisogno di essere isolate elettricamente tra cella e cella, e tra cella, sostegni metallici e cornice.

Il vantaggio di autocostruire un pannello fotovoltaico sta nel poterlo realizzare con dimensioni e forme a piacere e nella completa conoscenza del prodotto che all'occorrenza può essere riparato fin nei minimi particolari. Questo ci assicura una "garanzia a vita" del nostro pannello. In contropartita, nessuno può certificare la qualità del nostro prodotto con tutto quello che ne può scaturire (per esempio non può essere richiesta la certificazione dell'impianto fotovoltaico necessaria per accedere al Conto Energia).



Sezione tipica di un modulo fotovoltaico

Ecco come si presenta il pannello finito

Questo è il pannello fotovoltaico assemblato e collaudato.

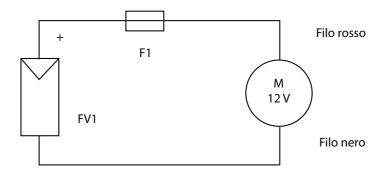
Si possono notare i particolari riflessi dati dalle celle policristalline.

36 - Autocostruzione dei pannelli fotovoltaici

Un altro pannello costruito dall'autore

Sono stati utilizzati profilati di alluminio con sezione quadrata per migliorare il fattore estetico. I profilati sono stati tagliati , ai loro estremi, a 45 gradi.

La potenza complessiva del pannello è all'incirca di 50 Wp.



Alimentazione di una pompa per giochi d'acqua

Per una semplice applicazione come può essere quella di accendere una piccola pompa per alimentare una piccola fontana o una piccola cascata oppure un qualsiasi gioco d'acqua può essere sufficiente un pannello fotovoltaico.

Servirsi di un solo pannello fotovoltaico significa far funzionare la fontana solamente nelle ore di sole.

Il seguente circuito elettrico è dunque utile per il solo funzionamento diurno.

Se per esempio abbiamo una pompa (M) da 12 V che assorbe 4,16 A di corrente allora avremo bisogno di costruire un pannello fotovoltaico calcolato per una tensione di 12 V e una potenza di 50 W.

Il pannello dovrà avere 24 celle in serie con una potenza di 2,3 W ciascuna.

Il fusibile (F1) viene introdotto per sicurezza e può andare bene un valore di 10 A.

Il pannello andrà posizionato in una zona soleggiata e possibilmente orientato a Sud.

Lucio Sciamanna, perito elettronico e consulente per il risparmio energetico e l'utilizzo delle energie alternative, vive e lavora nel Bresciano, dove segue numerosi progetti di energia rinnovabile.

www.aamterranuova.it

Realizzare un impianto fotovoltaico di tipo domestico è molto più facile di quanto sembri. Lo può fare chiunque: basta un cacciavite, un trapano elettrico, un piccolo saldatore e un minimo di capacità manuali. Al resto pensa l'autore di questo agile manuale che, con le sue minuziose istruzioni e il dvd allegato, accompagna il lettore passo passo attraverso le varie fasi: assemblaggio delle celle, montaggio e installazione del pannello. Con l'aiuto di questo libro, chiunque sarà in grado di produrre dal sole l'energia elettrica necessaria per illuminare una baita di montagna o alimentare una piccola pompa per giochi d'acqua.

Autocostruzione dei pannelli fotovoltaici è rivolto a tutti coloro che ritengono l'alfabetizzazione al solare una scelta necessaria e irrinunciabile per il futuro del Pianeta.

A completare il libro, un'appendice per utilizzare al meglio gli incentivi statali stanziati a favore di chi installa un impianto fotovoltaico.

